RS-485 (англ. Recommended Standard 485) — стандарт физического уровня для асинхронного интерфейса. Название стандарта: ANSI TIA/EIA-485-A:1998 Electrical Characteristics of Generators and Receivers for Use in Balanced Digital Multipoint Systems. Регламентирует электрические параметры полудуплексной многоточечной дифференциальной линии связи типа «общая шина».
Стандарт приобрел большую популярность и стал основой для создания целого семейства промышленных сетей, широко используемых в промышленной автоматизации.
Стандарт RS-485 совместно разработан двумя ассоциациями: Ассоциацией электронной промышленности (EIA — Electronic Industries Association) и Ассоциацией промышленности средств связи (TIA — Telecommunications Industry Association). Ранее EIA маркировала все свои стандарты префиксом «RS» (англ. Recommended Standard — Рекомендованный стандарт). Многие инженеры продолжают использовать это обозначение, однако EIA/TIA официально заменил «RS» на «EIA/TIA» с целью облегчить идентификацию происхождения своих стандартов.
Широко распространены преобразователи RS-232 – токовая петля и rs-485 – токовая петля.
Технические характеристики интерфейса RS-485
В стандарте RS-485 для передачи и приёма данных используется одна витая пара проводов, иногда сопровождаемая экранирующей оплеткой или общим проводом.
Физическую передачу данных осуществляют дифференциальные пары сигналов. Разница напряжений между проводниками одной полярности означает логическую единицу, разница другой полярности — ноль.
Стандарт RS-485 оговаривает только электрические и временные характеристики интерфейса. Стандарт RS-485 не оговаривает:
- параметры качества сигнала (допустимый уровень искажений, отражения в длинных линиях);
- типы соединителей и кабелей;
- гальваническую развязку линии связи;
- протокол обмена.
Электрические и временные характеристики интерфейса RS-485
- Поддерживаются до 32 приёмопередатчиков в одном сегменте сети.
- Максимальная длина одного сегмента сети: 1200 метров.
- В один момент активным может быть только один передатчик.
- Максимальное количество узлов в сети — 256 с учётом магистральных усилителей.
- Соотношения скорость обмена/длина линии связи:
- 62,5 кбит/с 1200 м (одна витая пара),
- 375 кбит/с 500 м (одна витая пара),
- 500 кбит/с,
- 1000 кбит/с,
- 2400 кбит/с 100 м (две витых пары),
- 10 000 кбит/с 10 м.
Тип приёмопередатчиков — дифференциальный, потенциальный. Изменение входных и выходных напряжений на линиях A и B: Ua (Ub) от −7 В до −12 В (+7 В до +12 В).
Требования, предъявляемые к выходному каскаду:
- выходной каскад представляет собой источник напряжения с малым выходным сопротивлением, |Uвых|=1,5:5,0 В (не <1,5 В и не >6,0 В);
- состояние логической «1»: Ua < Ub (гистерезис 200 мВ) — MARK, OFF;
- состояние логического «0»: Ua > Ub (гистерезис 200 мВ) — SPACE, ON (производители микросхем — драйверов, часто выбирают намного меньшие значения, гистерезис от 10 мВ);
- выходной каскад должен выдерживать режим короткого замыкания, иметь максимальный выходной ток 250 мА, скорость нарастания выходного сигнала 1,2 В/мкс и схему ограничения выходной мощности.
Требования, предъявляемые к входному каскаду:
- входной каскад представляет собой дифференциальный вход с высоким входным сопротивлением и пороговой характеристикой от −200 мВ до +200 мВ;
- допустимый диапазон входных напряжений Uag (Ubg) относительно земли (GND) от −7 В до +12 В;
- входной сигнал представлен дифференциальным напряжением (Ui +0,2 В и более);
- уровни состояния приёмника входного каскада — см. состояния передатчика выходного каскада.
Сигналы
Стандарт определяет следующие линии для передачи сигнала:
- A — неинвертирующая
- B — инвертирующая
- C — необязательная общая линия (ноль)
Согласно стандарту:
- VA > VB соответствует логическому «0» и называется «активным» (ON) состоянием шины;
- VA < VB соответствует логической «1» и называется «неактивным» (OFF) состоянием шины.
Таким образом, при описании состояний шины используется инверсная логика. При этом логика однополярных сигналов на входе передатчика и выходе приёмника стандартом не определяется.
Несмотря на недвусмысленное определение, иногда возникает путаница по поводу того, какие обозначения («A» или «B») следует использовать для инвертирующей и неинвертирующей линии. Для того, чтобы избежать этой путаницы, часто используются альтернативные обозначения, например: «+»/«-» или «D+»/«D-».
Большинство производителей придерживается стандарта и использует обозначение «A» для неинвертирующей линии. То есть, высокий уровень сигнала на входе передатчика соответствует состоянию VA > VB на шине RS-485; также VA > VB соответствует высокому уровню сигнала на выходе приёмника.
Необходимо обратить внимание, что «неактивное» состояние линии от «активного», в контексте, обозначенном в стандарте (соотв. передача лог. 0 и 1), не отличаются электрически, помимо полярности — то есть, не являются эквивалентом «занятости» или «свободности» линии. Оба состояния активно передают в линию соответствующий символ. Для отключения передатчика в нём всегда имеется отдельный вход — при его отключении выходы переходят в высокоимпедансное состояние, допуская работу в этой линии других передатчиков. Таким образом, «активное» и «неактивное» состояния сами по себе не являются индикатором чего-либо, помимо передаваемого бита. Протокол передачи, использующий относительное кодирование, допускает инверсию передаваемых данных, а значит перемену проводов в паре местами без каких-либо последствий. При этом, однако, на практике гораздо чаще используется не абстрактный или создаваемый разработчиком протокол обмена, а отражение протокола RS232 в его логической части на аппаратный уровень RS485 — так как производятся промышленные преобразователи соответствующего типа, что позволяет не разрабатывать свой логический протокол. Здесь полярность подключения принципиальна в связи с тем, что RS232 использует определённое толкование передаваемых символов и не допускает их инверсии.
Промышленные сети, построенные на основе RS-485:
Камак, IEEE 488 и RS-485 являются стандартами для передачи данных в компьютерных системах, но они имеют различия в функциональности и области применения.
1. Камак – это стандарт для передачи данных внутри крейта, взаимодействия с ЦАП и АЦП, передачи других типов данных и управления периферийными устройствами.
2. IEEE 488 (также известный как GPIB или HP-IB) – это стандарт для передачи данных между различными устройствами, такими как измерительные приборы, компьютеры, принтеры и другие устройства. Он обеспечивает высокую скорость передачи данных и множество устройств могут быть подключены к одной шине.
3. RS-485 – это стандарт для передачи данных по последовательному интерфейсу. Он применяется для соединения устройств на сравнительно длинных расстояниях (до 1200 м) и обеспечивает высокую скорость передачи данных.
Таким образом, Камак используется для передачи данных внутри крейта, в то время как IEEE 488 и RS-485 применяются для передачи данных между устройствами. IEEE 488 предназначен для использования в системах, где требуется подключение большого количества устройств, а RS-485 обычно используется в промышленных средах для передачи данных на относительно длинные расстояния.