Оптическое волокно́ — диэлектрическая направляющая среда, предназначенная для канализации электромагнитных волн оптического и инфракрасного диапазонов. Оптическое волокно коаксиальной конструкции и состоит из сердцевины, оболочки и первичного акрилатного покрытия и характеризуется профилем показателя преломления.
Кварцевое стекло, являющееся несущей средой ВОЛС, помимо уникальных пропускных характеристик, обладает ещё одним ценным свойством – малыми потерями и нечувствительностью к электромагнитным полям. Это выгодно отличает его от обычных медных кабельных систем, таких, как витая пара.
Данная система передачи информации, как правило, используется при постройке рабочих объектов в качестве внешних магистралей, объединяющих разрозненные сооружения или корпуса, а также многоэтажные здания. Она может использоваться и в качестве внутреннего носителя структурированной кабельной системы (СКС), однако законченные СКС полностью из волокна встречаются реже – в силу высокой стоимости строительства оптических линий связи.
Применение ВОЛС позволяет локально объединить рабочие места, обеспечить высокую скорость загрузки Интернет одновременно на всех машинах.
Используется в телекоммуникациях и в компьютерных сетях в качестве физической среды передачи сигнала во многих технологиях, таких как Myrinet, GPON, FDDI, Fibre Channel, Infiniband и Ethernet.
Оптические волокна могут быть одномодовыми и многомодовыми. Диаметр сердцевины одномодовых волокон составляет от 7 до 10 микрон. Благодаря малому диаметру сердцевины оптическое излучение распространяется по волокну в одной (основной, фундаментальной) моде и, как результат, отсутствует межмодовая дисперсия.
Существует три основных типа одномодовых волокон:
- одномодовое ступенчатое волокно с несмещённой дисперсией (стандартное) (SMF или SM, англ. step index single mode fiber), определяется рекомендацией ITU-T G.652 и применяется в большинстве оптических систем связи;
- одномодовое волокно со смещённой дисперсией (DSF или DS, англ. dispersion shifted single mode fiber), определяется рекомендацией ITU-T G.653. В волокнах DSF с помощью примесей область нулевой дисперсии смещена в третье окно прозрачности, в котором наблюдается минимальное затухание;
- одномодовое волокно с ненулевой смещённой дисперсией (NZDSF, NZDS или NZ, англ. non-zero dispersion shifted single mode fiber), определяется рекомендацией ITU-T G.655
Многомодовые волокна отличаются от одномодовых диаметром сердцевины, который составляет 50 микрон в европейском стандарте и 62.5 микрон в североамериканском и японском стандартах. Из-за большого диаметра сердцевины по многомодовому волокну распространяется несколько мод излучения — каждая под своим углом, из-за чего импульс света испытывает дисперсионные искажения и из прямоугольного превращается в колоколоподобный.
Многомодовые волокна подразделяются на ступенчатые и градиентные. В ступенчатых волокнах показатель преломления от оболочки к сердцевине изменяется скачкообразно. В градиентных волокнах это изменение происходит иначе — показатель преломления сердцевины плавно возрастает от края к центру. Это приводит к явлению рефракции в сердцевине, благодаря чему снижается влияние дисперсии на искажение оптического импульса. Профиль показателя преломления градиентного волокна может быть параболическим, треугольным, ломаным и т. д.
Полимерные (пластиковые) волокна производят диаметром 50, 62.5, 120 и 980 микрометров и оболочкой диаметром 490 и 1000 мкм.
Один из заключительных этапов монтажа ВОЛС – это разводка и подключение входящего оптоволоконного кабеля непосредственно в точке назначения: в серверной, дата-центре и т.д. Для этого кабель заводится в оптический кросс и волокна подсоединяются к разъемам, также известным как оптические розетки. На этом этапе используется такая группа, как оптические компоненты – это патчкорды, пигтейлы, адаптеры (розетки) и всякого рода зажимы. Их также объединяют под названием пассивное оптоволоконное оборудование. Пигтейл – это кусок оптического кабеля, оконцованный коннектором только с одной стороны. Патчкорд имеет коннекторы на обоих концах, типы разъемов при этом могут отличаться (переходной патчкорд) или быть одинаковыми (соединительный). Оптический адаптер – это, собственно, розетка, в которую подключается пигтейл или патч-корд. Что важно учитывать? Может показаться, что на стадии подключения коннектора в оптический адаптер нет ничего сложного. Как воткнуть вилку в розетку. Однако, нет. Давайте посмотрим хотя бы с точки зрения технологии. Что представляет собой комплект – патчкорд/пигтейл + адаптер? Это стыковка двух оптических волокон, толщина которых примерно равна толщине человеческого волоса. При этом сдвиг соединения даже на 1 микрон вызывает потерю мощности. То есть кроссовое соединение должно обеспечить: идеально точное соприкосновение сердечников (оптоволокна); защиту этого идеального соприкосновения от внешних влияний – сдвигов, возникновения воздушного зазора и т.п.; механическую защиту волокон при многократном соединении-разъединении; механическую защиту кабеля в коннекторе при изгибе, выдергивании и т.д. В частности, именно поэтому создано столько типов оптических коннекторов. Каждый производитель стремился создать идеальный разъем именно под свое оборудование.
FC.Старый, зарекомендовавший себя стандарт. Отличное качество соединения, особенно FC/UPC, FC/APC. подпружиненное соединение, за счет чего достигается “вдавливание” и плотный контакт; металлической колпачок – прочная защита; коннектор вкручивается в розетку, а значит, не может выскочить, даже если случайно дернуть; шевеление кабеля не влияет на соединение. Однако плохо подходит для плотного расположения разъемов – необходимо пространство для вкручивания/выкручивания.
SC.Более дешевый и удобный, но менее надежный аналог FC. Легко соединяется (защелка), разъемы могут располагаться плотно. Однако пластиковая оболочка может сломаться, да и на затухание сигнала и обратные отражения влияют даже прикосновения к коннектору. В общем, используется наиболее часто, но не рекомендован на важных магистралях.
LC.Уменьшенный аналог SC. За счет малого размера применяется для кроссовых соединений в офисах, серверных и т.п. – внутри помещений, там где требуется высокая плотность расположения разъемов. Автор разработки этого типа коннектора – ведущий производитель телекоммуникационного оборудования, Lucent Technologies (США) – изначально прогнозировал своему детищу судьбу лидера рынка. В принципе, так оно и есть. Особенно учитывая то, что этот тип разъема относится к соединениям с повышенной плотностью монтажа.
При грамотном проектировании будущей системы (этот этап подразумевает решение архитектурных вопросов, а также выбор подходящего оборудования и способов соединения несущих кабелей) и профессиональном монтаже применение волоконно-оптических линий обеспечивает ряд существенных преимуществ:
- Высокую пропускную способность за счёт высокой несущей частоты. Потенциальная возможность одного оптического волокна – несколько терабит информации за 1 секунду.
- Волоконно-оптический кабель отличается низким уровнем шума, что положительно сказывается на его пропускной способности и возможности передавать сигналы различной модуляции.
- Пожарная безопасность (пожароустойчивость). В отличие от других систем связи, ВОЛС может использоваться безо всяких ограничений на предприятиях повышенной опасности, в частности на нефтехимических производствах, благодаря отсутствию искрообразования.
- Благодаря малому затуханию светового сигнала оптические системы могут объединять рабочие участки на значительных расстояниях (более 100 км) без использования дополнительных ретрансляторов (усилителей).
- Информационная безопасность. Волоконно-оптическая связь обеспечивает надёжную защиту от несанкционированного доступа и перехвата конфиденциальной информации. Такая способность оптики объясняется отсутствием излучений в радиодиапазоне, а также высокой чувствительностью к колебаниям. В случае попыток прослушки встроенная система контроля может отключить канал и предупредить о подозреваемом взломе. Именно поэтому ВОЛС активно используют современные банки, научные центры, правоохранительные организации и прочие структуры, работающие с секретной информацией.
- Высокая надёжность и помехоустойчивость системы. Волокно, будучи диэлектрическим проводником, не чувствительно к электромагнитным излучениям, не боится окисления и влаги. Именно поэтому оптоволокно можно использовать на ЛЭП.
- Экономичность. Несмотря на то, что создание оптических систем в силу своей сложности дороже, чем традиционных СКС, в общем итоге их владелец получает реальную экономическую выгоду. Оптическое волокно, которое изготавливается из кварца, стоит примерно в 2 раза дешевле медного кабеля, дополнительно при строительстве обширных систем можно сэкономить на усилителях. Если при использовании медной пары ретрансляторы нужно ставить через каждые несколько километров, то в ВОЛС это расстояние составляет не менее 100 км. При этом скорость, надёжность и долговечность традиционных СКС значительно уступают оптике.
- Срок службы волоконно-оптических линий составляет полрядка четверти века. Через 25 лет непрерывного использования в несущей системе увеличивается затухание сигналов.
- Если сравнивать медный и оптический кабель, то при одной и той же пропускной способности второй будет весить примерно в 4 раза меньше, а его объём даже при использовании защитных оболочек будет меньше, чем у медного, в несколько раз.
- Перспективы. Использование волоконно-оптических линий связи позволяет легко наращивать вычислительные возможности локальных сетей благодаря установке более быстродействующего активного оборудования, причем без замены коммуникаций.
Область применения ВОЛС
Как уже было сказано выше, волоконно-оптические кабели (ВОК) используются для передачи сигналов вокруг (между) зданий и внутри объектов. При построении вешних коммуникационных магистралей предпочтение отдаётся оптическим кабелям, а внутри зданий (внутренние подсистемы) наравне с ними используется традиционная витая пара. Таким образом, различают ВОК для внешней и внутренней прокладки.
К отдельному виду относятся соединительные кабели: внутри помещений они используются в качестве соединительных шнуров и коммуникаций горизонтальной разводки – для оснащения отдельных рабочих мест, а снаружи – для объединения зданий.
Сварка оптического волокна – это процесс соединения двух волокон в одно целое. Для этого используются специальные аппараты, которые позволяют соединить два волокна с помощью лазера или другого источника света.
Процесс сварки оптического волокна включает в себя следующие этапы:
1. Подготовка волокон: волокна должны быть очищены от загрязнений и полированы до блеска.
2. Наведение волокон друг на друга: оба волокна должны находиться на одной линии и быть направлены друг на друга под определенным углом.
3. Сварка: с помощью специального аппарата производится сварка двух волокон. При этом происходит нагрев и плавление материала волокна, что позволяет им соединиться.
4. Проверка качества сварки: после сварки необходимо проверить качество соединения. Для этого используется специальный прибор – рефлектометр, который позволяет измерить длину волны сигнала и определить наличие потерь сигнала.
5. Завершение процесса: если качество сварки соответствует требованиям, то процесс сварки считается завершенным.