Заземление — преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством. В электротехнике при помощи заземления добиваются защиты от опасного действия электрического тока путём снижения напряжения прикосновения до безопасного для человека и животных значения. Также заземление применяется для использования земли в качестве проводника тока (например, в проводной электросвязи). Производится с помощью заземлителя, обеспечивающего непосредственный контакт с землёй, и заземляющего проводника.
В России требования к заземлению и его устройство регламентируются Правилами устройства электроустановок (ПУЭ).
Заземление в электротехнике подразделяют на естественное и искусственное.
К естественному заземлению принято относить те конструкции, строение которых предусматривает постоянное нахождение в земле. Однако, поскольку их сопротивление ничем не регулируется и к значению их сопротивления не предъявляется никаких требований, конструкции естественного заземления нельзя использовать в качестве заземления электроустановки. К естественным заземлителям относят, например, железобетонный фундамент здания.
Искусственное заземление — это преднамеренное электрическое соединение какой-либо точки электрической сети, электроустановки или оборудования с заземляющим устройством.
Заземляющее устройство (ЗУ) состоит из заземлителя (проводящей части или совокупности соединённых между собой проводящих частей, находящихся в электрическом контакте с землёй непосредственно или через промежуточную проводящую среду) и заземляющего проводника, соединяющего заземляемую часть (точку) с заземлителем. Заземлитель может быть простым металлическим стержнем (чаще всего стальным, реже медным) или сложным комплексом элементов специальной формы.
Заземляющий проводник заводится в электрический щит дома или квартиры и соединяется с заземляющей шиной. Она представляет собой металлическую полосу с клеммниками. К ней подключаются земляные проводники от каждого заземленного прибора или розетки. Если прибор подключается не через розетку, то к нему прокладывается свой заземляющий проводник, и он подключается к специальной клемме, соединенной с корпусом.
Все заземляющие проводники и шины имеют изоляцию или окрашены чередующимися полосами зеленого и желтого цветов.
Согласно предписанию ПУЭ, (1.7.28) заземлениями оснащаются: электрическое оборудование, электроустановки и электрические сети. Это попросту значит, что их заземляемые части должны быть электрически соединены с заземляющим устройством, представляющим собой заземлитель и соединительные провода. Непосредственно заземлитель располагается под поверхностью земли, где он напрямую электрически контактирует с грунтом.
По виду заземление бывает защитным и рабочим. Как можно догадаться, защитное заземление выполняет функции защиты от поражения электрическим током, а рабочее – нужно для нормального функционирования электрооборудования.
Если корпус поврежденного прибора заземлён – опасное напряжение стечет на землю и (или) сработает защитный прибор – устройство защитного отключения (УЗО) или автоматический выключатель дифференциального тока (дифавтомат).
Таким образом заземлением называют электрическое соединения корпуса электроприборов с заземлителем.
Качество заземления определяется значением сопротивления заземления / сопротивления растеканию тока (чем ниже, тем лучше), которое можно снизить, увеличивая площадь заземляющих электродов и уменьшая удельное электрическое сопротивление грунта: увеличивая количество заземляющих электродов и / или их глубину; повышая концентрацию солей в грунте, нагревая его и т. д.
Электрическое сопротивление заземляющего устройства различно для разных условий и определяется / нормируется требованиями ПУЭ и соответствующих стандартов.
Электроустановки в отношении мер электробезопасности разделяются на:
- электроустановки напряжением выше 1 кВ в сетях с глухозаземлённой или эффективно заземлённой нейтралью;
- электроустановки напряжением выше 1 кВ в сетях с изолированной или заземлённой через дугогасящий реактор или резистор нейтралью;
- электроустановки напряжением до 1 кВ в сетях с глухозаземлённой нейтралью;
- электроустановки напряжением до 1 кВ в сетях с изолированной нейтралью.
В зависимости от технических особенностей электроустановки и снабжающих электросетей, её эксплуатация может требовать различных систем заземления. Как правило, перед проектированием электроустановки, сбытовая организация выдаёт перечень технических условий, в которых оговаривается используемая система заземления.
Классификация типов систем заземления приводится в качестве основной из характеристик питающей электрической сети. ГОСТ Р 50571.2-94 «Электроустановки зданий. Часть 3. Основные характеристики» регламентирует следующие системы заземления: TN-C, TN-S, TN-C-S, TT, IT.
Для электроустановок напряжением до 1 кВ приняты следующие обозначения:
- система TN — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземлённой нейтрали источника посредством нулевых защитных проводников;
- система TN-С — система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всём её протяжении;
- система TN-S — система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всём её протяжении;
- система TN-C-S — система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то её части, начиная от источника питания;
- система IT — система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены;
- система ТТ — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземлённой нейтрали источника.
- Первая буква — состояние нейтрали источника питания относительно земли
- Т — заземлённая нейтраль (лат. terra);
- I — изолированная нейтраль (англ. isolation).
- Вторая буква — состояние открытых проводящих частей относительно земли
- Т — открытые проводящие части заземлены, независимо от отношения к земле нейтрали источника питания или какой-либо точки питающей сети;
- N — открытые проводящие части присоединены к глухозаземлённой нейтрали источника питания.
- Последующие (после N) буквы — совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников
- S — нулевой рабочий (N) и нулевой защитный (PE) проводники разделены (англ. separated);
- С — функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (PEN-проводник) (англ. combined);
- N — нулевой рабочий (нейтральный) проводник; (англ. neutral)
- PE — защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов)(англ. Protective Earth)
- PEN — совмещённый нулевой защитный и нулевой рабочий проводники (англ. Protective Earth and Neutral).
Защитные заземления предотвращают возможность попадания человека под напряжение (поражение током), что возможно в случае повреждения изоляции электрического оборудования или соприкосновения с оборванными проводами. Защитному заземлению подлежат все металлические наружные части и каркасы электротехнического оборудования.
Телекомунникационные кроссы и серверные стойки также подлежат заземлению.
Заземление в целях молниезащиты.
Для отведения в землю тока молнии, ударившей в здание, тоже применяют заземление. Но поскольку ток молнии ищет путь от молниеприемника к земле по элементам здания наименьшего сопротивления, этим путем могут оказаться и водопроводные трубы, и влажные стены, и другие проводящие части здания, что весьма опасно.
Поэтому молниеотвод прокладывается отдельным проводом по наружной части здания, так он напрямую соединяет молниеприемник с заземлителем, обеспечивая для разряда молнии путь в землю минимального сопротивления. При этом люди и чувствительные электроприборы внутри здания остаются в безопасности.
Влияние типа бетона и свойств почвы на параметры заземления
Удельное электрическое сопротивление водоупорного бетона, используемого для первичной защиты от агрессивных грунтов, значительно выше, чем у обычного. Это связано с более плотной структурой, содержащий минимальное количество пор. Для водоупорного бетона удельное объемное электрическое сопротивления может быть вычислено на основании данных о коэффициенте водопоглощения и марке по водонепроницаемости. Также встречаются сорта бетона, устойчивые к действию агрессивных сред за счет введения в их состав специальных присадок. Объемное удельное сопротивление таких сортов бетона определяется путем проведения измерений на конкретных образцах.
Возможность использования железобетонного фундамента в качестве заземления системы молниезащиты в значительной степени зависит от свойств грунта. Как правило, если грунт обладает высокой степенью агрессивности, использование фундамента в качестве заземления также невозможно,поскольку ГОСТ требует обеспечить полную изоляцию железобетона от агрессивной среды.
Единственным справочным документом по оценке пригодности фундамента к использованию в качестве заземления применительно к молниезащите, в России до сих пор являются Материалы по проектированию и эксплуатационному контролю «Использование заземляющих свойств строительных конструкций производственных зданий и сооружений», выпущенные в 1991 г. ВНИИПЭМ. По свойствам грунта, бетона и защитного покрытия на основании приведенных в Материалах формулах и графиках вычисляется значение плотности тока, стекающего с арматуры. Сравнение данного параметра с нормативными значениями позволяет сделать вывод о возможности использования фундамента в качестве заземления.